The key question in genomics is how genomes vary and evolve at both large and fine scales. The Evolutionary and Functional Genomics lab is particularly interested in understanding the molecular processes underlying adaptive evolution and the functional consequences of adaptive mutations. Towards this end, -omics strategies with detailed molecular and functional analyses of the candidate adaptive mutations are combined in order to arrive at a comprehensive picture of adaptation. This lab studies both transposable element (TE)-induced adaptations and point mutations in the model organism Drosophila melanogaster. It is also interested in the population dynamics of TEs. TEs are the most active, diverse, and ancient components in a broad range of genomes. As such, a complete understanding of genome function and evolution cannot be achieved without a thorough understanding of TE impact and TE biology.

Lab website: González Lab

Principal Investigator Principal Investigator

Current members Current members

Ongoing projects Ongoing projects

— 5 Items per page
Showing 1 - 5 of 7 results.

Publications Publications

Mateo, L.; Ullastres, A.; and González, J. 2014. A Transposable Element Insertion Confers Xenobiotic Resistance in Drosophila. PLoS Genetics 10 (8):e1004560


Mateo, L.; and González, J. 2014. Pogo-like Transposases Have Been Repeatedly Domesticated into CENP-B-Related Proteins. Genome Biology and Evolution 6 (8):2008-2016


Guio, L.; Barrón M.G.; González, J. 2014. The transposable element Bari-Jheh mediates oxidative stress response in Drosophila. Molecular Ecology 23:2020-2030


Bergland, A.O.; Tobler, R.; Gonzalez, J.; Schmidt, P.; and Petrov, D. 2014. Secondary contact and local adaptation contribute to genome-wide patterns of clinal variation in Drosophila melanogaster. BioRxiv


Barrón, M.G.; Fiston-Lavier, A.-S.; Petrov, D.A.; González, J. 2014. Population Genomics of Transposable Elements in Drosophila. Annual Review of Genetics 48(1): 561-581.