Principal Investigator: Josefa González Principal Investigator: Josefa González


Research lines Research lines

Adaptive evolution 

Adaptation is the key concept in Evolutionary Biology. Understanding adaptation has important scientific and social implications since adaptation underlies processes such as the ability of species to survive in changing environments, resistance to antibiotics and cancer chemotherapies and host-pathogen interactions, among others. However, adaptation is to date a very poorly understood process largely because the current approaches to the study of adaptation are often exclusively based on a priori candidate genes or on searching for signals of selection at the DNA level giving us an incomplete and biased picture of the adaptive process.  In our lab we aimed at understanding the molecular process of adaptation and its functional consequences. Towards this end, we study recent transposable element (TE)-induced adaptations in Drosophila melanogaster.  


Deciphering the role of transposable elements in adaptation 

Transposable elements (TEs) are short DNA sequences, typically from a few hundred bp to ~10 kb long, that have the ability to move around in the genome often generating new copies of themselves in the process. TEs contribute from ~1% to ~85% to total DNA and have great impact in the genome structure and function because they generate rearrangements, regulate gene expression and alter gene function. Thus, understanding TE activities provides a deeper knowledge of fundamental biological questions.  We performed the first genome-wide screening for recent TE-induced adaptations. Using several independent criteria, we identified a set of 18 adaptive TEs and estimated that 25-50 TEs have played adaptive roles since the migration of D. melanogaster out-of-Africa. However, the set of adaptive insertions identified so far is too small to extract general conclusions about the process of adaptation. In our lab we are searching for more adaptive TE insertions using genome sequences made available by other labs and also by sequencing particular populations. 


Population dynamics of transposable elements 

TEs are ubiquitous, extremely active and an abundant part of eukaryotic genomes. In our lab we are also interested in understanding the population dynamics of TEs. We analyze the frequency of all the TEs identified in the genome. This data will allow us to determine the relative importance of several hypothesized selective forces in the copy number maintenance for different families and types of TEs. The recent sequencing of 11 other Drosophila genomes provides an unprecedented opportunity for the study of TEs. The availability of these data should allow us to investigate the TE population dynamics in both a short and a long time scale, in species with presumably large and small population size and in species both globally distributed and restricted to specific geographical areas. 


Chromosome evolution: rates, patterns and mechanisms underlying them

Understanding the dynamics of eukaryotic chromosomal evolution is fundamental to our understanding of genome biology and evolution, e. g. species origin, survival and adaptation. In our lab we are also interested in understanding the rates and patterns of chromosome evolution and the mechanisms underlying them. We collaborate with Prof. Alfredo Ruiz lab at the Universitat Autonòma de Barcelona on the sequencing and characterization of the breakpoint regions of several inversions in the Drosophila repleta group species.


Lab website: González Lab



News News

Principal Investigator Principal Investigator

Current members Current members

Publications since 2011 Publications since 2011

Villanueva-Cañas J.L.; Rech G.E.; de Cara M.A.R.; González J. 2017. Beyond SNPs: how to detect selection on transposable element insertions. Methods in Ecology and Evolution. 8(6):728-737

Villanueva-Cañas, J.L.; Ruiz-Orera, J.; Agea, M.I.; Gallo, M.; Andreu, D.; Albà, M.M. 2017. New genes and functional innovation in mammals. Genome Biology and Evolution. 9(7):1886-1900

Le Manh H.; Guio L.; Merenciano M.; Rovira Q.; Barrón M.G.; González J. 2017. Natural and laboratory mutations in kuzbanian are associated with zinc stress phenotypes in Drosophila melanogaster. Scientific Reports. 7:artículo 42663

Horváth, V.; Merenciano, M.; González, J. 2017. Revisiting the Relationship between Transposable Elements and the Eukaryotic Stress Response. Trends in Genetics. 33(11):832-841

Merenciano, M.; Ullastres, A.; de Cara, M.A.; Barrón, M.G.; González, J. 2016. Multiple Independent Retroelement Insertions in the Promoter of a Stress Response Gene Have Variable Molecular and Functional Effects in Drosophila. PLOS Genetics 12(8):e1006249

Ongoing projects Ongoing projects

In the media In the media

On the outreach project "Melanogaster Catch The Fly" (PI: Josefa González):

On the publication of the article "Gene Expression Profiling in the Hibernating Primate, Cheirogaleus Medius", with the participation of José Luis Villanueva-Cañas (Josefa Gonzalez's group):

On the publication of the article "A Transposable Element Insertion Confers Xenobiotic Resistance in Drosophila", with the participation of Josefa González: